References

- Appleton, T. G., Clark, H. C. & Manzer, L. E. (1973). Coord. Chem. Rev. 10, 335–422.
- Bartell, L. S., Roth, E. A., Hollowell, C. D., Kuchitsu, K. & Young, J. E. (1965). J. Chem. Phys. 42, 2683–2686.
- Cotton, F. A. & Norman, J. G. (1971). J. Am. Chem. Soc. 93, 80-82.
- Kettmann, V., Dunaj-Jurčo, M., Steinborn, D. & Ludwig, M. (1994). Acta Cryst. C50, 1239–1241.
- Martinez, J., Gill, J. B., Adams, H., Bailey, N. A., Saez, I. M., Sunley, G. J. & Maitlis, P. M. (1990). J. Organomet. Chem. 394, 583–599.
- NRC Crystallographic Programs for the IBM360 System (1973). Accession Nos. 133–147. J. Appl. Cryst. 6, 309–346.
- Stang, P. J. & Kowalski, M. H. (1989). J. Am. Chem. Soc. 111, 3356–3362.
- Stang, P. J., Kowalski, M. H., Schiavelli, M. D. & Longford, D. (1989). J. Am. Chem. Soc. 111, 3347–3356.
- Steinborn, D. (1992). Angew. Chem. 104, 392–412; Angew. Chem. Int. Ed. Engl. 31, 401–421.
- Steinborn, D. & Ludwig, M. (1993). Contributions to the Development of Coordination Chemistry, edited by G. Ondrejovic & A. Sirota, pp. 343-348. Slovak Technical Univ. Press; J. Organomet. Chem. 463, 65-71.
- Steinborn, D., Taube, R. & Radeglia, R. (1988). Mitteilungsbl. Chem. Ges. DDR, 35, 278–284.
- Vicente, J., Martin, J., Solans, X. & Font-Altaba, M. (1989). Organometallics, 8, 357–361.

Acta Cryst. (1994). C50, 1430-1432

{[(1*R*,2*S*,3*R*,6*R*)-2-(*tert*-Butyldimethylsilyloxymethyl)-6-(2-furyl)-3-methyl-4-oxocyclohexyl](methoxy)methylene}pentacarbonyltungsten(0)

Santiago García-Granda, Enrique Pérez-Carreño and Armando A. Paneque-Quevedo†

Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, Spain

SOFÍA BARLUENGA AND ALFREDO MARTÍN

Instituto Universitario de Química Organometálica 'Enrique Moles', Universidad de Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, Spain

(Received 9 December 1993; accepted 23 March 1994)

Abstract

The structure and absolute configuration of the title compound, $[W(CO)_5(C_{20}H_{32}O_4Si)]$, is reported. The W atom has distorted octahedral coordination defined by one carbene and five carbonyl ligands.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

Comment

Fischer-carbene complexes (Fischer & Maasbol, 1964) are well known for their ability to produce a wide range of reactions (Wulff et al., 1990) which are used increasingly in organic synthesis. For example, they promote benzannulation reactions between α,β -unsaturated complexes and alkenes, cyclopropanation of olefins, cycloaddition of unsaturated complexes to 1,3-dienes, and photolytic reactions. In an earlier paper we reported (Barluenga et al., 1994) a highly stereoselective [4+2] cvcloaddition reaction between chiral 2-amino-1,3-dienes and α,β -unsaturated Fischer-carbene complexes of tungsten. Since the elucidation of the absolute configuration of these complexes is essential in order to understand the detailed mechanism of selective formation of one of the possible enantiomers, a single-crystal X-ray diffraction study of the title complex (I) has been carried out.

The complex contains a central W atom bonded to one carbene and five carbonyl groups. The W atom is thus coordinated by six C atoms with a W—C(carbene) bond length of 2.171 (3) Å and a mean W—C(CO) bond length of 2.037 (2) Å. The stereochemistry around the W atom is only approximately octahedral. The maximum distortions from ideal octahedral geometry are shown by the angles C23—W1—C25 and C1—W1—C22 of 85.1 (2) and 98.3 (2)°, respectively.

Fig. 1. *EUCLID* (Spek, 1982) plot showing the atomic numbering scheme. Displacement ellipsoids are plotted at the 30% probability level.

[†] Present address: Centro Nacional de Investigaciones Científicas, Apartado 6990 Ciudad de la Habana, Cuba.

W1

Si1

C1 04

03

02

C2

C24

C8

01

C12

C7 C5

C25

07 06 C6 09 C9

C21 C4 C3

05

C15

C10

C13 C23

C18

08

C19

C11 C17

C20 C14 C16

Experimental

To a solution of 0.66 g (2.03 mmol) of $(S)-(E)-N-\{2-\text{methyl-}$ 1-methylene-4-[(tert-butyldimethylsilyl)oxy]-2-butenyl}-2-(methoxymethyl)pyrrolidine in 20 ml of anhydrous DMF cooled to 223 K, 0.93 g of pentacarbonyl[trans-3-(2-furyl)-1-methoxy-2-propenylidene]tungsten(0) was added. The deep red solution was stirred for 2 days while the temperature slowly increased to 293 K. The reaction mixture was then concentrated and hydrolysed by filtration through silica gel with water-saturated diethyl ether. The orange solution was collected, concentrated and chromatographed on silica gel with hexane:ethyl acetate (3:1). Fractions of the endo adduct $(1R^*, 2R^*, 3S^*, 6R^*)$, with R_f 0.66 (250 mg, 18% yield, e.e. 2%), and the title compound, with $R_f 0.52$ {90 mg, 6.5% yield, $[a]_{D}^{20} -27^{\circ}$ (CH₂Cl₂), c 2.15×10^{-3} g ml⁻¹, e.e. 98%}, were collected. The second fraction was crystallized from hexane (m.p. 391-393 K).

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

reflections

 $\mu = 4.117 \text{ mm}^{-1}$

Transparent blocks

 $0.40 \times 0.23 \times 0.23$ mm

4558 observed reflections

 $[I > 2\sigma(I)]$ $R_{int} = 0.029$ $\theta_{max} = 24.99^{\circ}$

 $(\Delta/\sigma)_{max} = 0.173$ $\Delta\rho_{max} = 0.588 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.352 \text{ e} \text{ Å}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and

6.1.1.4)

 $h = 0 \rightarrow 10$ $k = 0 \rightarrow 18$ $l = -25 \rightarrow 25$ 3 standard reflections frequency: 60 min intensity variation: 2%

T = 293 (2) K

 $\theta = 15 - 20^{\circ}$

Orange

Cell parameters from 25

Crystal data

Data collection	
Enraf–Nonius CAD-4	
diffractometer	
ω –2 θ scans	
Absorption correction:	

semi-empirical (DIFABS:			
Walker & Stuart, 1983)			
$T_{\min} = 0.95, T_{\max} = 1.16$			
5788 measured reflections			
5038 independent reflections			
(including Friedel pairs)			

Refinement	ł
Dafaamaa	•

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.0178$
$wR(F^2) = 0.0469$
S = 1.099
5038 reflections
347 parameters
H atoms riding with
common $U_{\rm iso}$
Calculated weights
$w = 1/[\sigma^2(F_o^2) + (0.0255P)^2]$
+ 0.9420 <i>P</i>]
where $P = (F_o^2 + 2F_c^2)/3$

Table	1.	Fractional	atomic	coord	linates	and	equiv	alent
		isotropic di	splacem	ent pa	ramete	ers (À	A ²)	

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

x	v	Z	U_{eq}
-0.12121(2)	-0.130624 (8)	-0.065055 (7)	0.04024 (5)
-0.57893 (12)	0.15575 (7)	-0.20461 (5)	0.0454 (3)
-0.0841 (4)	0.0104 (2)	-0.0561 (2)	0.0345 (7)
0.0342 (3)	0.0553 (2)	-0.03714 (13)	0.0438 (6)
-0.4264 (3)	0.1349 (2)	-0.16281 (11)	0.0464 (6)
-0.4364 (4)	0.0623 (3)	0.03774 (15)	0.0655 (9)
-0.2056 (4)	0.0796 (2)	-0.0711 (2)	0.0342 (7)
-0.1425 (5)	-0.1181 (3)	-0.1587 (2)	0.0543 (10)
-0.2896 (5)	0.0895 (3)	0.0407 (2)	0.0440 (9)
0.0964 (5)	-0.1675 (3)	-0.0820 (2)	0.0592 (12)
-0.3498 (5)	0.3353 (2)	-0.1023 (2)	0.0741 (10)
-0.2801 (4)	0.1072 (3)	-0.1828 (2)	0.0453 (9)
-0.1660 (3)	0.1302 (3)	-0.1323 (2)	0.0384 (7)
-0.2892 (5)	0.2670 (3)	-0.0878 (2)	0.0471 (9)
-0.1739 (5)	-0.2603 (3)	-0.0706 (2)	0.0542 (10)
-0.2050 (5)	-0.3336 (2)	-0.0726 (2)	0.0837 (11)
0.2127 (5)	-0.1956 (3)	-0.0929 (2)	0.1009 (15)
-0.1531 (4)	0.2307 (2)	-0.1226 (2)	0.0455 (9)
-0.4767 (4)	-0.1098 (3)	-0.0460 (2)	0.0902 (13)
-0.2258 (6)	0.0621 (3)	0.0936 (2)	0.0583 (11)
-0.0876 (6)	-0.1457 (3)	0.0288 (2)	0.0606 (12)
-0.3398 (4)	0.2161 (3)	-0.0323 (2)	0.0472 (10)
-0.2326 (4)	0.1415 (3)	-0.0142 (2)	0.0402 (8)
-0.0676 (5)	-0.1540 (3)	0.0804 (2)	0.0927 (14)
-0.5555 (7)	0.0135 (4)	-0.2888 (3)	0.081 (2)
-0.3384 (6)	0.0131 (4)	0.1261 (2)	0.0731 (15)
-0.6599 (5)	0.0517 (3)	-0.2393 (2)	0.0515 (10)
-0.3502 (4)	-0.1122 (3)	-0.0521 (2)	0.0548 (10)
-0.5312 (8)	0.2370 (4)	-0.2670 (3)	0.079 (2)
-0.1487 (6)	-0.1123 (3)	-0.2114 (2)	0.0922 (12)
-0.1207 (7)	0.2821 (3)	-0.1822 (2)	0.0646 (11)
-0.4611 (7)	0.0143 (4)	0.0912 (2)	0.080 (2)
-0.7104 (6)	0.2032 (4)	-0.1459 (3)	0.080 (2)
0.1705 (4)	0.0118 (3)	-0.0142(2)	0.0545 (11)
-0.6852 (9)	-0.0171 (4)	-0.1882 (3)	0.096 (2)
-0.8153 (7)	0.0724 (5)	-0.2699 (3)	0.094 (2)

Table 2. Selected geometric parameters (A	Å,	°)	
---	----	----	--

W1-C25	2.023 (4)	C8C9	1.333 (6)
W1-C24	2.028 (6)	C8—C3	1.504 (6)
W1-C22	2.029 (6)	C22—O6	1.134 (6)
W1-C21	2.049 (6)	01-C5	1.206 (5)
W1-C23	2.055 (6)	C12—C7	1.518 (5)
W1-C1	2.171 (3)	C7—C6	1.543 (5)
Si1-03	1.646 (4)	C5—C4	1.488 (6)
Si1-C17	1.857 (5)	C5—C6	1.516 (6)
Si1-C18	1.868 (6)	C25—07	1.146 (5)
Si1-C13	1.884 (4)	C6-C19	1.525 (6)
C104	1.309 (4)	O9—C23	1.122 (6)
C1-C2	1.534 (5)	C9—C10	1.422 (7)
O4—C20	1.456 (5)	C2105	1.129 (6)
O3—C12	1.422 (5)	C4—C3	1.524 (5)
O2—C8	1.358 (5)	C15—C13	1.520 (7)
O2-C11	1.377 (6)	C10C11	1.314 (8)
C2—C3	1.559 (5)	C13-C14	1.531 (7)
C2—C7	1.560 (5)	C13-C16	1.550 (7)
C2408	1.135 (5)		
C25-W1-C24	90.6 (2)	C9—C8—O2	110.3 (4)
C25-W1-C22	86.5 (2)	C9—C8—C3	133.6 (4)
C24—W1—C22	86.3 (2)	O2—C8—C3	116.1 (4)
C25-W1-C21	89.0 (2)	O6-C22-W1	173.5 (4)
C24W1C21	176.8 (2)	O3-C12-C7	108.5 (3)
C22—W1—C21	90.5 (2)	C12—C7—C6	111.9 (3)
C25—W1—C23	85.1 (2)	C12—C7—C2	109.9 (3)
C24W1C23	91.7 (2)	C6—C7—C2	112.8 (3)
C22-W1-C23	171.3 (2)	01-C5-C4	121.4 (4)
C21-W1-C23	91.4 (2)	01-C5-C6	122.3 (4)
C25-W1-C1	175.1 (2)	C4—C5—C6	116.3 (3)

C24-W1-C1	90.59 (14)	07—C25—W1	178.6 (5)
C22-W1-C1	98.3 (2)	C5-C6-C19	112.1 (4)
C21-W1-C1	90.01 (15)	C5C6C7	111.5 (3)
C23-W1-C1	90.13 (15)	C19-C6-C7	113.9 (4)
03-Si1-C17	102.3 (2)	C8C9C10	106.6 (5)
O3-Si1-C18	109.5 (2)	O5-C21-W1	179.4 (5)
C17-Si1-C18	111.8 (3)	C5-C4-C3	113.8 (3)
O3-Si1-C13	111.3 (2)	C8—C3—C4	112.4 (3)
C17-Si1-C13	110.9 (3)	C8-C3-C2	110.5 (3)
C18-Si1-C13	110.7 (3)	C4—C3—C2	110.0 (3)
04-C1-C2	105.3 (3)	C11-C10-C9	106.7 (4)
04-C1-W1	131.3 (2)	C15-C13-C14	109.2 (5)
C2-C1-W1	123.4 (2)	C15-C13-C16	108.3 (4)
C1O4C20	121.7 (3)	C14-C13-C16	108.2 (5)
C12-03-Sil	129.2 (2)	C15-C13-Si1	111.6 (3)
C8	105.8 (4)	C14-C13-Si1	110.0 (3)
C1-C2-C3	110.7 (3)	C16-C13-Si1	109.4 (4)
C1-C2-C7	111.0 (3)	O9-C23-W1	174.0 (4)
C3-C2-C7	113.5 (3)	C10-C11-O2	110.6 (5)
O8-C24-W1	177.3 (5)		

Data were collected with profile analysis over all reflections (Lehman & Larsen, 1974; Grant & Gabe, 1978). Cell refinement was performed using *CRYSDA DIRDIF* (Beurskens *et al.*, 1992). The local program *DATAR* was used for data reduction. The structure was solved by Patterson interpretation using the program *SHELXS86* (Sheldrick, 1990). Refinement was performed using *SHELX76* (Sheldrick, 1976; Van der Maelen Uría, 1991) and *SHELX193* (Sheldrick, 1993). The absolute configuration was tested using the program *BI-JVOET* (Beurskens, Noordik & Beurskens, 1980) giving B = 1.0000 (1) for the 200 Friedel pairs showing the largest intensity differences. The material for publication was prepared using *SHELX193* and *PARST* (Nardelli, 1983).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1103). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Barluenga, J., Aznar, F., Martín, A., Barluenga, S., García-Granda, S. & Paneque-Quevedo, A. A. (1994). J. Chem. Soc. Chem. Commun. pp. 843–844.
- Beurskens, G., Noordik, J. H. & Beurskens, P. T. (1980). Cryst. Struct. Commun. 9, 23–28.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, Univ. of Nijmegen, The Netherlands.
- Fischer, E. O. & Maasbol, A. (1964). Angew. Chem. Int. Ed. Engl. 3, 580.
- Grant, D. F. & Gabe, E. J. (1978). J. Appl. Cryst. 11, 114-120.
- Lehman, L. S. & Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Spek, A. L. (1982). The EUCLID Package. Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
- Van der Maelen Uría, J. F. (1991). PhD thesis, Univ. of Oviedo, Spain. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Wulff, W. D., Bauta, W. E., Kaesler, R. W., Lankford, P. J., Miller, R. A., Murray, C. K. & Yang, D. C. (1990). J. Am. Chem. Soc. 112, 3642.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1994). C50, 1432–1434

A (Phenyldithiocarbamato)rhodatelluraborane Compound: $[2-{\eta^2-S_2CN(H)Ph}-2-(PPh_3)-closo-2,1-RhTeB_{10}H_{10}]$

GEORGE FERGUSON

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

DONNACHA O'CONNELL AND TREVOR R. SPALDING

Chemistry Department, University College, Cork, Republic of Ireland

(Received 22 February 1994; accepted 7 April 1994)

Abstract

The Rh atom in 2-(*N*-phenyldithiocarbamato-*S*,*S*')-2-(triphenylphosphine)-*closo*-2,1-rhodatelluradodecaborane(12), [Rh(C₇H₆NS₂)(C₁₈H₁₅P)(B₁₀H₁₀Te)], is bonded to triphenylphosphine [Rh—P 2.4020 (5) Å], *N*-phenyldithiocarbamate [Rh—S 2.4132 (5) and 2.3577 (6) Å] and the TeB₄ face of the TeB₁₀H₁₀ ligand [Rh—Te 2.5812 (3) Å].

Comment

The title compound was prepared by the reaction of excess PhNCS with $[2,2-(PPh_3)_2-2-H-1,2-TeRhB_{10}H_{10}]$ in CH₂Cl₂ solution. The X-ray analysis was undertaken to establish the nature of the sulfur-containing ligand and its mode of bonding. Our analysis shows that the Rh atom in the title compound, (I), is bonded to PPh₃ and η^2 -S₂CNHPh ligands as well as to the TeB₄ face of the TeB₁₀H₁₀ cage. The twelve-vertex distorted *closo* dodecahedral cage can be described in terms of Wade's rules as a variation of *closo*-[B₁₂H₁₂]²⁻ with the Rh(η^2 -S₂CNHPh)(PPh₃) unit equivalent to BH and the Te atom to [BH]²⁻ (Wade, 1976). The Rh—Te bond length of 2.5812 (3) Å is significantly shorter than that of 2.6172 (4) Å in [2,2-(PPh₃)₂-2-H-1,2-TeRhB₁₀H₁₀] (Faridoon *et al.*, 1988). The Rh—S

Acta Crystallographica Section C ISSN 0108-2701 ©1994